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SIMULATION-BASED ENGINEERING SCIENCE
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• Physics-based simulation for increasingly complex engineered systems

- Advances in modeling, numerical algorithms, and computational resources 
have enabled high-fidelity simulation of realistic, large-scale problems

• A concrete example: Curiosity’s “Seven Minutes of Terror” (NASA JPL, 2012)
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• Exascale computing and massive parallelism

- Parachute simulation: 7 days on 2500 cores for 1 s of physical time

• Processing time issues are exacerbated in the parametric setting

THE PERENIAL QUESTION OF
COMPUTATIONAL EFFICIENCY
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Pleiades, NASA Ames (#32 on TOP500)



PROJECTION-BASED MODEL ORDER REDUCTION

Engineering science
High-fidelity, PDE-
based simulation

Engineering design
Routine analysis and

time-critical applications

How can we make high-fidelity physics-based models useful for applications 
demanding real-time predictions?

PMOR



• High-dimensional, nonlinear, parametric computational models

- Prohibitively expensive to solve in many-query settings

• Solution approximation and dimensionality reduction

- Trajectories of solutions to the high-dimensional model (HDM) often lie in  
low-dimensional subspaces

PROJECTION-BASED MODEL ORDER REDUCTION
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- Data-driven approaches to 
discover reduced-order basis 
(ROB) for subspace



• High-dimensional, nonlinear, parametric computational models

- Prohibitively expensive to solve in many-query settings

• Solution approximation and dimensionality reduction

- Trajectories of solutions to the high-dimensional model (HDM) often lie in  
low-dimensional subspaces

- Divide and conquer: offline-online decomposition to enable efficient online 
simulations

- Physics-based machine learning for acceleration of the HDM

PROJECTION-BASED MODEL ORDER REDUCTION
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- Data-driven approaches to 
discover reduced-order basis 
(ROB) for subspace

Projection-based reduced-order model (PROM)



• Cost of training in offline stage: data collection costs from HDM and scalable 
algorithms for PROM construction

• Reducibility: finding accurate low-dimensional subspace approximations with 
𝑛 small enough for computational efficiency

• Stability: numerical stability of PROM operators does not necessarily follow from 
stability of the HDM

• Parametric dependence: implications for cost of training and reducibility

• Computational efficiency: low-dimensionality does not imply significant speedup 
factors for the nonlinear setting

OBSTACLES FOR PMOR
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In the specific context of time-dependent, nonlinear, turbulent computational fluid 
dynamics (CFD) applications, focus on:

I. Reducibility: Convection-dominated and multiscale solution phenomena over 
large spatial and temporal ranges

- Address concerns of modal truncation leading to numerical instability

II. Computational efficiency: Treatment of nonpolynomial nonlinearities in HDM for 
PMOR of nonlinear CFD models to eliminate computational bottlenecks

- Ensure associated training algorithms scale to reduce the cost of training

PMOR FOR TURBULENT FLOW PROBLEMS
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PARAMETRIC PMOR (WASHABAUGH, 2016)
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Boeing 777

NASA Common Research Model (CRM)



• Cruise conditions

- 𝑀∞ = 0.85, 2.32° angle of attack, 𝑅𝑒 = 5.0 × 106

• 3D steady-state RANS CFD model

- Spalart-Allmaras turbulence model

- Wall function

- Unstructured mesh with 11.5M                                                                         
vertices

• “What-if” scenarios to pave the way for automated optimization

PARAMETRIC PMOR (WASHABAUGH, 2016)
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• Four-dimensional parameter space

- Wingspan

- Streamwise wingtip rake

- Vertical wingtip rake

- Outboard twist (washout)

Drag Baseline: 141.01 kN
What-if: 141.76 kN



• Training on Excalibur (Cray XC40, U.S. ARL)

- 1,024 cores assigned to each of 24 sampled configurations

- 2 hrs wall-clock time per sampled parameter point → embarrassingly parallel

- 14.6 min wall-clock time for constructing global ROB and PROM on 1,024 cores

TOTAL COMPUTATIONAL OVERHEAD
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Wall-clock time investment: 2 hrs on 24,576 cores
+ 14.6 min on 1,024 cores



ONLINE PERFORMANCE
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• Global PROM accuracy for parameter query at center of design space

27 m25 m

15 m 20 m



ONLINE PERFORMANCE

14

• Parameter query at center of design space

- Near real-time prediction: PROM solution in 2.8 min on a laptop

Drag Baseline: 141.01 kN
What-if: 142.31 kN
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I. On Numerical Stability for Convection-
Dominated Problems



NONLINEAR HYPERBOLIC PROBLEMS
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• What about scale-resolving turbulent flow models?

- Large eddy simulation (LES)

- Direct numerical simulation (DNS)

• Convection-dominated problems  → not exactly low-rank

- Slow convergence of snapshot matrix singular values characteristic of slowly 
decaying Kolmogorov 𝑛-width of HDM solution manifold

Trade-off between large 𝑛
required for accuracy, 
or small 𝑛 for speed

→

Modal truncation



• Turbulent energy cascade (Kolmogorov, 1941)

• Recurrent claim for turbulent PROMs: modal truncation eliminates viscous 
dissipation mechanisms and therefore artificially destabilizes the computation

- Only supported by numerical evidence using in ALL cases PROMs based on
Galerkin projection (left ROB 𝑾 = 𝑽)

- Here, the case is made that Galerkin projection is to blame for instability, 
rather than physical cascade argument

TURBULENCE
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Energy-
containing 

range

Dissipation
range

Inertial 
subrange



PMOR AS A SEMI-DISCRETIZATION METHOD
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• “We do not learn, and that what we call learning is only a 
process of recollection”

• PMOR is a Ritz method (1909) where the global basis 
functions are constructed a posteriori after some knowledge 
about the parametrized system is developed, instead of 
being selected a priori  → learning vs. postulation

Plato



SEMI-DISCRETIZATION FOR CONVECTION-
DOMINATED FLOW PROBLEMS
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• Consider the linear advection-diffusion equation

• Error estimate for Galerkin finite element method with standard polynomial 
approximations of order 𝑘

• Streamline-upwind Petrov-Galerkin (SUPG) method (1982)

- Use different test/trial function spaces to achieve numerical stability

Instability



PETROV-GALERKIN PROJECTION
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• Right (test) ROB 𝑽 is constructed for optimal accuracy, left (trial) ROB 𝑾 enforces 
uniqueness of the solution as well as any desired additional constraints

• In the linear case: Petrov-Galerkin projection to ensure PROM satisfies Lyapunov 
stability criterion for LTI systems (Amsallem and Farhat, 2012)

• In the nonlinear case: time-discrete residual minimization

1. → Galerkin projection:                              , only if inverse of
Jacobian is symmetric positive definite (SPD)

2. → Petrov-Galerkin projection: equivalence for any SPD

• → Least-squares Petrov-Galerkin (LSPG): Gauss-Newton method for 
nonlinear least-squares



SUPPORTING NUMERICAL EXAMPLES
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• Several numerical examples demonstrate falseness of the truncation-based 
instability claim

- Example #1: Galerkin PROMs unstable even in the absence of turbulence for 
convection-dominated problems

- Example #2: Galerkin PROMs stable even with severe modal truncation when 
non-convection-dominated

• Petrov-Galerkin PROMs using the LSPG projection will be shown to be numerically 
stable (and accurate) in all cases



2D LAMINAR FLOW OVER A CIRCULAR CYLINDER
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• At 𝑅𝑒 = 100 and 𝑀∞ = 0.2, flow exhibits periodic vortex shedding after transient 
startup

- Time integration in nondimensional time interval [0, 200], where flow  
becomes periodic at 𝑡 = 100

• HDM characterization

- Compressible Navier-Stokes equations semi-discretized using a second-order 
mixed FV/FE scheme

- Implicit time discretization using second-order DIRK scheme

- Resulting dimension 𝑵 = 490,700

Solution vorticity snapshot



2D LAMINAR FLOW OVER A CIRCULAR CYLINDER
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• At 𝑅𝑒 = 100 and 𝑀∞ = 0.2, flow exhibits periodic vortex shedding after transient 
startup

- Time integration in nondimensional time interval [0, 200], where flow  
becomes periodic at 𝑡 = 100

• Galerkin and Petrov-Galerkin PROMs

- Least-squares Petrov-Galerkin (LSPG) projection

- 751 collected solution snapshots from 𝑡 ∈ [0, 150]

- 3 ROB dimensions for constructing Galerkin and LSPG PROMS: 𝒏 = 20, 35, and
55, corresponding to 99.9%, 99.99%, and 99.999% of snapshot matrix singular 
value energy

Solution vorticity snapshot



2D LAMINAR FLOW OVER A CIRCULAR CYLINDER
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Galerkin, 𝑛 = 55Galerkin, 𝑛 = 35Galerkin, 𝑛 = 20

• Comparison of time histories of lift and drag coefficients for Galerkin PROMs



2D LAMINAR FLOW OVER A CIRCULAR CYLINDER
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LSPG, 𝑛 = 55LSPG, 𝑛 = 35LSPG, 𝑛 = 20

• Comparison of time histories of lift and drag coefficients for Petrov-Galerkin 
PROMs



𝑡 = 0

𝑡 = 8

𝑡 = 4

𝑡 = 12

TAYLOR-GREEN VORTEX PROBLEM



• Homogeneous, isotropic turbulence in a triply-periodic box of side-length 2𝜋 at   
𝑅𝑒 = 1,600

- Canonical flow often used as benchmark problem for evaluating numerical 
schemes and their ability to simulate turbulence

- In nondimensional time interval [0, 20], vortices decay into turbulence

- Multiscale flow transition used to study effects of ROB truncation on PROM 
accuracy and stability

• HDM construction

- Pseudospectral Fourier-Galerkin method for DNS of the incompressible   
Navier-Stokes equations

- 512 grid points per spatial direction yields 𝑵 = 402,653,183

- Time integration using explicit RK4 for snapshot collection with 
nondimensional time step ∆𝑡 = 0.001

TAYLOR-GREEN VORTEX PROBLEM

27



• Galerkin and Petrov-Galerkin PROM construction

- 201 solution snapshots collected at ∆𝑠 = 0.1 from HDM for ROB construction 
via POD

- 4 Galerkin and LSPG PROMs of dimension 𝒏 = 6, 22, 47, and 81 corresponding 
to energy thresholds from 90% to 99.99%

- All PROMs employ implicit four-point BDF scheme for time discretization

TAYLOR-GREEN VORTEX PROBLEM

28



Galerkin, 𝑛 = 6 Galerkin, 𝑛 = 22

Galerkin, 𝑛 = 47 Galerkin, 𝑛 = 81

• Comparison of time histories of the enstrophy-based dissipation rate computed 
using the HDM and Galerkin PROMs

TAYLOR-GREEN VORTEX PROBLEM
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LSPG, 𝑛 = 6 LSPG, 𝑛 = 22

LSPG, 𝑛 = 47 LSPG, 𝑛 = 81

• Comparison of time histories of the enstrophy-based dissipation rate computed 
using the HDM and Petrov-Galerkin PROMs

TAYLOR-GREEN VORTEX PROBLEM
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• Some pertinent observations

- Both Galerkin and LSPG PROMs deliver similar performance and are 
numerically stable for all values of 𝑛

- Very high degree of accuracy achieved for 𝒏 = 81, versus HDM dimension         
𝑵 = 402,653,183, even for complex multiscale physics

• LSPG PROM speedup factors vs. HDM

TAYLOR-GREEN VORTEX PROBLEM
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Model 𝑛
Wall-clock time

(# cores)
Wall-clock time
speedup factor

CPU time 
speedup factor

HDM 34.9 hrs (128) - -

PROM

6 6.0 s (1) 21,100 2,700,000

22 14.8 s (1) 8,480 1,090,000

47 1.2 min (1) 1,820 233,000

81 8.1 min (1) 258 33,100



• NACA 0012, 𝑅𝑒 = 10,000, 𝑀∞ = 0.2, 30° angle of attack

- Compute vortex shedding solution for 30 nondimensional time units

• Spatial and time discretization

- Vreman (2004) subgrid-scale turbulence model

- Fifth-order low-diffusion finite volume scheme for convective terms,       
second-order Galerkin finite element scheme for diffusive terms

- Time discretization using third-order DIRK scheme

LES OF FLOW PAST AN EXTRUDED AIRFOIL

Contours of vorticity magnitude colored by Mach number

• Computational domain

- One-chord length extrusion in 
spanwise direction, periodic BC 
on spanwise faces

- Unstructured mesh with 2.1M 
vertices, 11.9M tetrahedra

- HDM dimension 𝑵 = 10,397,730
32



• PROM construction

- HDM solution snapshots collected at ∆𝑠 = 0.06  → 501 snapshots

- Right ROB of dimension 𝒏 = 83 computed via POD, corresponding to singular 
value energy threshold of 95%

- Galerkin and LSPG PROMs

LES OF FLOW PAST AN EXTRUDED AIRFOIL
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• Comparison of lift coefficient and streamwise velocity and pressure computed at a 
probe using the HDM and Galerkin PROM

- Probe is located 1.5 chord lengths downstream from airfoil TE

• Galerkin PROMs are numerically unstable for all considered ROB dimensions

LES OF FLOW PAST AN EXTRUDED AIRFOIL
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• Comparison of lift coefficient and streamwise velocity and pressure computed at a 
probe using the HDM and Petrov-Galerkin PROM

- Probe is located 1.5 chord lengths downstream from airfoil TE

• LSPG PROMs are stable, and maintain stability and accuracy when hyperreduction 
is introduced

LES OF FLOW PAST AN EXTRUDED AIRFOIL
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SUMMARY AND CONCLUSIONS, PART I
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• Proving vs. disproving: LSPG projection is/can be stable for nonlinear PMOR of 
scale-resolving turbulent flow models

- Galerkin projection can also produce stable and accurate PROMs, but only 
where appropriate: not well-suited for convection-dominated problems

• Physics vs. numerics: explaining numerical behavior using only physics-based 
arguments is not necessarily justifiable and can lead to the wrong conclusions
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II. Computational Bottlenecks and Hyperreduction



• Recall the semi-discrete nonlinear HDM

and linear (global) subspace approximation

PROM CONSTRUCTION
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PROM CONSTRUCTION
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• Constructing a Petrov-Galerkin PROM of dimension 𝑛

- Even though PROM is low-dimensional, solution can be more expensive than 
the HDM!

• Polynomial nonlinearities admit precomputable decomposition

PROM:

← Dimension 𝑁

← Dimension 𝑛 ≪ 𝑁

precomputable



ISSUES WITH NONLINEARITY
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• For the general nonlinear case, solution of the PROM is still expensive

- Must reconstruct high-dimensional state, compute high-dimensional nonlinear 
function, then project onto low-dimensional space

- 𝑂(𝑁𝑛) at every linearization, every time step, every new parameter query

• Hyperreduction: a second-layer approximation introduced to accelerate evaluation 
of nonlinear models

- Remove complexity scaling with 𝑁

- Raison d’être goes beyond just state nonlinearities: linear stochastic PROMs, 
nonaffine parameter dependence



HYPERREDUCTION OF NONLINEAR PROMS
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• Approximate-then-project hyperreduction methods

- Empirical interpolation approaches based on the gappy proper orthogonal 
decomposition (POD) method (1995)

- Common 3-step idea:

- State-of-the-art for many PMOR frameworks, including CFD

- Standard implementations rely on suboptimal greedy mesh sampling 
algorithms and only consider accuracy of high-dimensional interpolation

1. Compute function at only a few spatial locations:

2. Interpolate using empirical basis functions:

3. Compute the projected approximation:



• Project-then-approximate hyperreduction methods

- Approximate the projected reduced-order quantities directly

- Interpretation as empirical generalized quadrature rules

• Example: energy-conserving sampling and weighting (ECSW) (2014)

- Developed for second-order finite element models in computational   
structural dynamics

- Unique structure preserving and stability properties

HYPERREDUCTION OF NONLINEAR PROMS

42



ECSW FOR TURBULENT FLOW MODELS
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• Can we generalize the ECSW method to accelerate nonlinear PROMs for CFD 
applications?

- First-order systems of conservation laws

- Arbitrary underlying semi-discretizations

- Training algorithms for very high-dimensional problems

- Is | ሚℰ| ≪ |ℰ| possible for complex, turbulent flow applications?



ECSW FOR TURBULENT FLOW MODELS
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• ECSW approximation for general Petrov-Galerkin PROMs

- 𝑳𝑒 is a boolean localization matrix to the DOFs corresponding to mesh entity 𝑒

- Computations take place on a reduced mesh defined by ሚℰ, which can represent 
a subset of the high-dimensional mesh elements, dual-cells, collocation points, 
or any required geometric entity as per the HDM semi-discretization



ECSW FOR TURBULENT FLOW MODELS
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OPTIMAL SAMPLE WEIGHT COMPUTATION
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• How to compute the sampled entities ሚℰ and the associated weights 𝜉𝑒?

• Consider a set of training snapshots 

- Assemble training data in matrix form representing the 𝑾𝑇𝒓 operation over   
all 𝑁𝑡 training samples

Exact assembly satisfies 𝑪𝟏 = 𝒅 → Find sparse set of weights s.t. 𝑪𝝃 ≈ 𝒅



OPTIMAL SAMPLE WEIGHT COMPUTATION
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• Computing the sample weights 𝜉𝑒 via large-scale supervised learning

- ℓ0-pseudonorm minimization is NP-hard and thus generally intractable

• Solve instead a convex approximation which promotes sparsity: non-negative   
least squares

equipped with an early termination criterion

- Significant work developing solvers to deal with large problem size (storage   
for 𝑪 quickly exceeds 1TB for problems of interest)
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Performance assessment for laminar and
RANS flow models



• HDM characterization

- Compressible Navier-Stokes equations semi-discretized using a second-order 
mixed FV/FE scheme

- Implicit time discretization using second-order DIRK scheme

- Resulting dimension 𝑵 = 490,700

• Petrov-Galerkin PROM construction

- Least-squares Petrov-Galerkin (LSPG) projection

- 751 collected snapshots from 𝑡 ∈ [0, 150] yield ROB 𝑽 of dimension 𝒏 = 35    
using POD

2D LAMINAR FLOW OVER A 
CIRCULAR CYLINDER, REVISITED

49

Solution vorticity snapshot



2D LAMINAR FLOW OVER A 
CIRCULAR CYLINDER, REVISITED
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• Hyperreduction training

- Proposed ECSW adaptation with tolerance 𝜀 = 0.01 and 376 solution  
snapshots, taken as every second one used for POD

- Mesh sampling yields | ሚℰ| = 376, sampled cells (0.33% of HDM mesh cells)

Original mesh Reduced mesh



2D LAMINAR FLOW OVER A 
CIRCULAR CYLINDER, REVISITED
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• Comparison of lift and drag coefficient time histories as computed by the HDM, 
ECSW-based hyperreduced PROM (HPROM), and two alternative state-of-the-art 
hyperreduction methods

• ECSW-based HPROMs are numerically stable and accurate, even outside of trained 
time interval when solution remains periodic

- Results also hold for solution computed at probes instead of integrated 
quantities



2D LAMINAR FLOW OVER A 
CIRCULAR CYLINDER, REVISITED
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• Comparison of wall-clock times for HDM- and HPROM-based simulations (both 
performed on a single core)

- HDM solution: 65.4 hours

- HPROM solution: 2.8 minutes

Wall-clock time speedup factor = 1,410



TURBULENT AHMED BODY WAKE FLOW
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• Detached eddy simulation (DES) of flow past the Ahmed body geometry with slant 
angle = 20°

- 𝑅𝑒 = 4.29 × 106, 𝑉∞ = 60 m/s

- Common benchmark problem in the automotive industry

Contours of vorticity magnitude colored by Mach number



TURBULENT AHMED BODY WAKE FLOW
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• HDM, PMOR, and hyperreduction

- Computational domain discretized using 2.9M vertices and 17.0M tetrahedra, 
leads to HDM dimension 𝑵 = 17,342,604

- Local subspace approximations are constructed with average dimension            
ഥ𝒏 = 86, 29, and 11 (corresponding to 10, 50, and 100 local subspaces)

- Sampled cells for ECSW-based HPROMs:

Contours of vorticity magnitude colored by Mach number

# of subspaces | ሚℰ| | ሚℰ|/|ℰ|

10 1,620 0.056%

50 347 0.012%

100 137 0.0047%



TURBULENT AHMED BODY WAKE FLOW
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• Comparison of lift and drag coefficient time histories and velocity computed at a 
probe using the HDM and each local HPROM

- Probe is located 0.5 body lengths downstream in wake



TURBULENT AHMED BODY WAKE FLOW
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• Comparison of wall-clock times for HDM- and HPROM-based simulations

- HDM solution computed on 240 cores

- HPROM solutions computed on 8 cores

Model # of subspaces Wall-clock time
Wall-clock time
speedup factor

CPU time
speedup factor

HDM - 12.1 hours - -

HPROM

10 10.4 min 70 2,090

50 1.3 min 572 17,200

100 36.8 s 1,190 35,600



• Unsteady flow simulation past an F-16C/D fighter jet model at 30° angle of attack

- Freestream conditions: 10,000 ft altitude, 𝑀∞ = 0.3, 𝑅𝑒 = 18.2 × 106

- Complex geometry and high angle of attack results in massive flow     
separation and formation of turbulent vortical structures

• High-fidelity, high-dimensional flow model

- Compressible Navier-Stokes equations, one-equation RANS turbulence model

- Unstructured tetrahedral mesh with 26.9M vertices and 159.0M elements, 
resulting dimension 𝑵 = 161.5M

- Second-order implicit time integration, 100,000 time steps for ~1.3 s of 
physical time

TURBULENT FLOW PAST AN F-16C/D FIGHTER JET

57



• Unsteady flow simulation past an F-16C/D fighter jet model at 30° angle of attack

- Freestream conditions: 10,000 ft altitude, 𝑀∞ = 0.3, 𝑅𝑒 = 18.2 × 106

- Complex geometry and high angle of attack results in massive flow     
separation and formation of turbulent vortical structures

• Computational cost

- Solution for time interval of interest requires 100.3 hours wall-clock time     
(~4 days) on 3,584 cores

TURBULENT FLOW PAST AN F-16C/D FIGHTER JET

58

Contours of vorticity magnitude colored by Mach number



TURBULENT FLOW PAST AN F-16C/D FIGHTER JET
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• Unsteady, nonparametric PMOR

- Collect 5001 snapshots from the HDM simulation (every 20 time steps) and 
construct local subspace approximation with average dimension ഥ𝒏 = 53

- Hyperreduction training with error tolerance 𝜀 = 0.01 yields | ሚℰ| = 787             
(vs. |ℰ| = 26.9M  → 0.0029% of HDM mesh cells)

- Total training cost for subspace approximation & mesh sampling: 2.1 hours     
on 3,584 cores

• HPROM-based simulation performance

- 5.8 minutes on 32 cores  → wall-clock time speedup factor = 1,040

CPU-time speedup factor = 117,000



• Comparison of lift and drag coefficient time histories computed by the HDM and 
HPROM

• ECSW-based HPROM captures with a high-degree of accuracy the HDM solution for 
time interval of interest

TURBULENT FLOW PAST AN F-16C/D FIGHTER JET
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TURBULENT FLOW PAST AN F-16C/D FIGHTER JET
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HDM HPROM



SUMMARY AND CONCLUSIONS, PART II
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• A new hyperreduction method for Petrov-Galerkin PROMs demonstrated to:

- Outperform state-of-the-art methods for CFD models

- Produce HPROMs for large-scale unsteady RANS-based CFD models which are 
both accurate and deliver large speedup factors



SUMMARY AND CONCLUSIONS

• Low-dimensional PMOR for convection-dominated and scale-resolving turbulent 
flow models is possible after making sure to take care of stability via the numerics

• Empirical quadrature via the ECSW method provides a practical and feasible 
hyperreduction framework for general nonlinear problems

• Perspectives for future work:

- Time-dependent, parametric demonstrations with greedy adaptive parameter 
sampling

- Nonlinear multiphysics applications: coupled fluid-structure interaction and 
embedded boundary methods


